

2-AXIS DEFLECTION UNITS

Translation of the original manual

MINISCAN III

MINISCAN III-10, MINISCAN III-14, MINISCAN III-20

This manual has been created by RAYLASE for its customers and employees.

RAYLASE reserves the right to modify the product described in this manual and the information it contains without prior notification. All rights reserved. Duplication of this manual, including extracts – particularly by photocopying, scanning or photographing – and any other form of reproduction is only permitted with the prior written approval of RAYLASE.

Information correct at: 2021/04

CONTENTS

1	ABOUT THIS MANUAL	5
1.1	Basic information	5
1.2	Display conventions	
1.3	Other applicable documents	5
1.4	Manufacturer	6
1.5	Customer service	6
1.6	Warranty	6
2	GENERAL SAFETY INFORMATION	8
2.1	Designated use	8
2.2	Classification of laser systems	
2.3	Laser area	9
2.4	Hazards due to laser radiation	
2.5	Required training and instruction of operating personnel	11
2.6	Required protection measures	
2.7	Behaviour in case of destroyed zinc selenide (ZnSe) lenses	11
3	PRODUCT DESCRIPTION	12
3.1	Items included, accessories and spare parts	12
3.2	General description	12
3.3	Product versions	16
3.4	Examples of use	
3.5	Signage	
3.6	Technical data	
3.7	Lifespan	25
4	INSTALLATION	26
4.1	Safety during installation	26
4.2	Installation location	27
4.3	Preparing for installation	
4.4	Installing the lens	
4.5	Installing the deflection unit	
4.6	Completing installation	29
5	START-UP	30
5.1	Safety during start-up and operation	
5.2	Checking the installation	
5.3	Start-up	31

6		32
6.1	Cleaning	
6.2	Servicing	
7	UNINSTALLING	34
7.1	Safety when uninstalling	
7.2	Uninstalling the deflection unit	
8	STORAGE	35
9		36
10	DISPOSAL	37
11		38
INDE	x	39

1 ABOUT THIS MANUAL

1.1 Basic information

This manual provides general information about handling MINISCAN III series deflection units. In subsequent chapters, the general designations "deflection unit" or "product" are used to refer to the MINISCAN III. The product version is indicated by the type code on the rating plate (see page17, Signage).

This manual contains important information about professional and safe handling of the deflection unit. As a result, you should familiarise yourself with the content of this manual before starting to use the deflection unit. In case of any queries, please contact RAYLASE Customer Service for information (see page 6, Customer service).

The manual must be accessible to anyone involved in developing, installing, uninstalling or using a laser system with a RAYLASE deflection unit. If the deflection unit is sold on, this manual or an authorised copy must be passed on with it.

1.2 Display conventions

The signal word WARNING indicates hazards that can lead to injuries or damage unless precautionary measures are taken.

The signal word NOTE indicates general precautionary measures to be observed when handling the product to prevent damage to the product itself.

• Bullet points in a list are shown with a square at the beginning of the line.

Instructions are introduced with an objective and are shown with numbered actions. If necessary, an intermediate result and a final result are specified.

- 1. First instruction
- 2. Second instruction
 - > An intermediate result is represented by an arrow symbol.
- 3. Further instruction
 - ✓ An end result is represented by a tick.

1.3 Other applicable documents

- Declaration of incorporation
- Production log
- Manuals for optional accessories

1 ABOUT THIS MANUAL

1.4 Manufacturer

RAYLASE GmbH Argelsrieder Feld 2+4 82234 Wessling Germany T: +49 8153 9999 699 | F: +49 8153 9999 296 www.raylase.de | info@raylase.de Referred to in this text as RAYLASE.

1.5 Customer service

The USB stick supplied contains the manual and answers numerous questions about RAYLASE products. If any questions are not answered, RAYLASE Customer Service will be pleased to assist:

Monday to Friday between 08:00 and 17:00 Germany (Wessling) T: +49 8153 9999 699 | F: +49 8153 9999 296 support@raylase.de

China (Shenzhen) T: +86 755 2824 8533 | F: +86 755 8222 8193 info@raylase.cn

1.6 Warranty

The customer's rights in the event of any material or legal defects in the product are set out in RAYLASE's general terms and conditions of business. These can be viewed at: https://www.raylase.de/en/terms-and-conditions.html

RAYLASE GmbH has no obligation to repair any defects occurring under the following circumstances:

- If the product has been operated outside the specifications.
- If unauthorised repairs have been carried out on the product.
- If unauthorised modifications have been made to the product.
- If the product has been connected to non-compatible devices.
- If the product has been damaged by unacceptably high laser power or by focusing the laser on optical surfaces.
- If the product has been damaged by unqualified cleaning of the optics.
- If the warranty has elapsed.

Component Surfaces

Surfaces of aluminium products are either chemically anodised or powder coated to protect the aluminium parts from environmental damage.

Powder coating can cause small visible differences in surface colour or sheen. Anodized surfaces can show milling tracks, areas of slight shading, and localized colour changes.

These variations are due to the production process, and have absolutely no influence on the product's functionality. Such variations are excluded from the warranty.

1 ABOUT THIS MANUAL

There is no implicit guarantee or warranty regarding suitability for particular purposes. RAYLASE is not responsible for damage resulting from the application. Individual assemblies or other assemblies manufactured by RAYLASE may be subject to different warranty terms. Further information can be found in the corresponding manuals.

2 GENERAL SAFETY INFORMATION

2.1 Designated use

The deflection unit is intended to deflect laser radiation within an appropriate operating range for the purposes of material processing.

The deflection unit is designed as a sub-assembly for laser systems and is classed as an incomplete machine as defined in the Machine Directive. Each product version may only be operated with the wavelength specified in the type code (see page 17, Signage) and with the specified beam diameter (see page 19, Technical data).

Depending on the version, the MINISCAN III is designed for lasers with wavelengths of 355 nm to 11,000 nm, and an input aperture of 10 mm, 14 mm and 20 mm.

2.2 Classification of laser systems

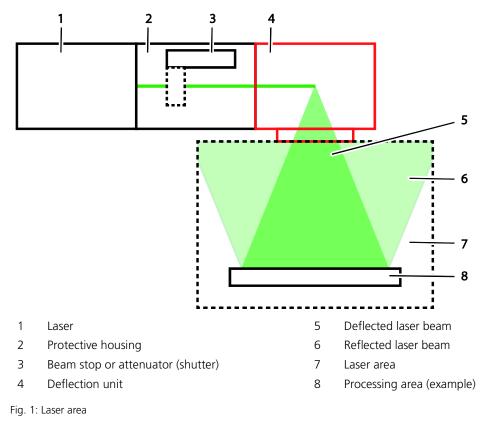
The deflection unit can be installed on a range of different laser systems. Every laser system is assigned to a laser class, which must be specified at the output location of the laser radiation (e.g. using a laser warning sign).

The following laser classes are defined in DIN EN 60825-1 and described in DGUV Regulation 11:

Class	Description
1	The accessible laser radiation is not dangerous under reasonably foreseeable conditions.
1M	The accessible laser radiation is in the wavelength range 302.5 nm to 4,000 nm. The accessible laser radiation is not dangerous to the eyes, provided the beam cross-section is not reduced by optical instruments (e.g. magnifiers, lenses, telescopes).
2	The accessible laser radiation is in the visible spectral range (400 nm to 700 nm). Short exposure times (up to 0.25 s) are not dangerous to the eyes. Additional beam components outside the wavelength range 400 nm to 700 nm meet the conditions for Class 1.
2М	The accessible laser radiation is in the visible spectral range 400 nm to 700 nm. Short exposure times (up to 0.25 s) are not dangerous to the eyes, provided the beam cross-section is not reduced by optical instruments (e.g. magnifiers, lenses, telescopes). Additional beam components outside the wavelength range 400 nm to 700 nm meet the conditions for Class 1M.
3R	The accessible laser radiation is in the wavelength range 302.5 nm to 10 ⁶ nm and is dangerous to the eyes. The power or energy is a maximum of five times the permitted Class 2 radiation limit in the wavelength range 400 nm to 700 nm and five times the Class 1 limit for other wavelengths.
ЗВ	The accessible laser radiation is dangerous to the eyes and frequently also to the skin.
4	The accessible laser radiation is very dangerous to the eyes and dangerous to the skin. Diffusely scattered radiation can also be dangerous. The laser radiation can cause a risk of fire and explosion.

Note that the deflection unit changes the beam output location of the laser system. The new beam output must be indicated by a laser warning sign on the deflection unit, stating the corresponding classification.

The use of a deflection unit can change the laser system's laser class. This can necessitate additional protective measures.


2.3 Laser area

For the purposes of accident prevention, the laser area refers to the area in which the maximum permitted radiation value can be exceeded. Laser systems must be assigned and marked according to their laser class and use.

With a corresponding beam intensity, the laser area is defined by the total radiation angle of the deflection unit and by the reflection of all objects that can be irradiated by it. It is important to note that, in addition to reflective surfaces, matt and dark surfaces can also reflect laser radiation and that a laser beam reflected several times can still be dangerous. In addition, the deflection unit can be destroyed by back reflection.

The laser area must have permanently and legibly attached markings in accordance with DIN EN 60825-1. Laser systems must be fitted with the protective mechanisms required for safe operation according to their class and use.

No combustible or explosive objects and liquids may be located in the laser area, as the energy of the laser beam can ignite them.

2.4 Hazards due to laser radiation

This chapter describes hazards that can result due to interaction with the higher-level laser system. The operator of the higher-level laser system is responsible for safe operation and for securing the surrounding area to prevent hazards that can be caused by laser radiation. They must ensure compliance with all applicable conditions, regulations, laws, standards and directives.

2.4.1 General safety measures

The following general safety measures are to be observed:

- To ensure that the laser beam is immediately switched off in the event of a fault, the laser process must always be monitored. Alternatively, the entire beam path can be in a radiation-proof housing.
- The laser system must be designed in such a way that the laser beam can only be emitted at the beam output on the deflection unit.
- Appropriate protection mechanisms must be in place to prevent unauthorised activation or use of the laser system.
- The maximum permitted input beam diameter may not be exceeded.
- If the materials to be processed can result in toxic vapours, safe extraction of these must be ensured. Oxidising material processing and processing with material removal that is precipitated onto the optics must be handled properly.

2.4.2 Measures to prevent uncontrolled escape of laser radiation.

If the mirrors in the deflection unit are destroyed, the laser beam no longer exits the deflection unit at the intended beam output but remains inside the deflection unit. This leads to heating and, in some cases, destruction of the housing and can lead to uncontrolled escape of the laser beam.

To prevent destruction of the mirrors, the following points must be observed:

- At the laser beam input, it is essential that the laser beam strikes the centre of the mirrors. If the laser beam strikes a mirror towards the edge, the mirror can be overheated and destroyed.
- To prevent a loss of control, the plug connections to the deflection unit may only be disconnected when the laser system and the power supply are switched off.
- The deflection unit should always be operated with a lens or protective window.
- The maximum permitted laser power may not be exceeded.
- The deflection unit must be installed in such a way that the mirrors cannot come into contact with liquids. Liquids change the reflective properties of the mirrors, which can lead to them being destroyed by the laser beam.
- Before processing highly reflective materials, RAYLASE must be contacted as reflections can lead to the destruction of the deflection unit.
- In general, correct and careful handling of the optical components must be ensured, particularly during maintenance and cleaning work. Contaminated or scratched optics can absorb unacceptable amounts of laser power and thus be destroyed.

2.5 Required training and instruction of operating personnel

The deflection unit is designed exclusively for use in an industrial environment.

Start-up, operation, installation, maintenance and repairs may only be carried out by trained personnel who have been instructed by the laser protection officer and are sufficiently qualified to perform the relevant work.

2.6 Required protection measures

If present in the laser area, protective equipment such as laser protection goggles or special protective clothing is required. The required protective equipment is stipulated by the laser protection officer based on the individual hazards caused by the laser equipment. The laser area must be marked so that the required protective equipment is clearly indicated to all personnel who intend to enter the laser area.

Behaviour in case of destroyed zinc selenide (ZnSe) lenses

2.7

Only for deflection units with ZnSe F-Theta lens

Zinc selenide properties hazardous to health

• Destruction of zinc selenide lenses can result in dust containing hydrogen selenide and selenium dioxide. This dust can be carcinogenic and is very toxic when inhaled.

🕰 WARNING

To improve the optical properties of the material, zinc selenide is frequently given an anti-reflective coating that may contain thorium fluoride. Thorium is a radioactive element. The quantity of thorium contained in the coating and the relative size of the decomposed area of the lens surface mean that, even in the worst cases, the resulting radioactive exposure levels are normally well below the limits set out in the Radiological Protection Ordinance.

If lenses are damaged:

- 1. Switch off the laser system immediately.
- 2. Leave the room for at least 30 minutes.
- 3. Never remove the lens or the protective window from the deflection unit. Toxic dust or fragments may have been produced in the deflection unit.
- 4. If the deflection unit should be opened and fragments fall out, the fragments must only be collected up using appropriate protective clothing and breathing apparatus and disposed of as hazardous material in line with the applicable conditions, regulations and legislation.
- 5. Label the defective deflection unit with a clear warning notice and send the deflection unit to RAYLASE in air-tight protective packaging.
- 6. The personnel charged with uninstalling the deflection unit must wear appropriate protective clothing and breathing apparatus.
- 7. The room in which the zinc selenide lens was destroyed must be adequately cleaned, decontaminated and ventilated.
- 8. Wear gloves and mouth protection when carrying out the subsequent tasks.
- 9. Carefully collect all fragments and pack them in an air-tight sealable container.
- 10. Clean all contaminated system components and surfaces with a damp cloth and pack the cleaning cloths in an air-tight sealable container.
- 11. Send the containers to the supplier of the optics. They are responsible for proper disposal of the material.

3 PRODUCT DESCRIPTION

3.1 Items included, accessories and spare parts

The items included are typically:

- Deflection unit
- USB stick containing manual, declaration of incorporation and design data
- Production log

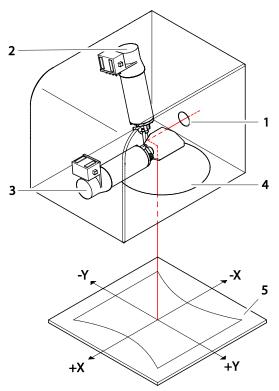
The product can be expanded with the following optional components:

- F-Theta lens
- Collimator Bracket Set
- Collimator
- Control card
- Adapter card / interface electronics between control card and deflection unit
- Software package

3.2 General description

3.2.1 Deflection unit

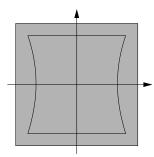
The deflection unit can be used to deflect a laser beam in the X and Y direction. This results in a twodimensional area in which the laser can be directed to any position. This area is referred to as the processing area. Deflection is performed by two mirrors, each of which is moved by a galvanometer scanner.


The beam output can be fitted with an optional focusing lens (see page 14, F-Theta lens).

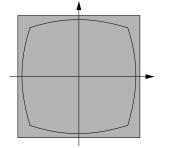
NOTE

- On the input side, the laser beam must be input precisely into the optical axis (see page 26, Installation).
- Only suitable lasers may be input (see page 17, Signage).

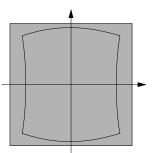
3 PRODUCT DESCRIPTION


- 1 Beam input
- 2 Galvanometer scanner with mirror
- 3 Galvanometer scanner with mirror
- Fig. 2: Principle of operation

- 4 Beam output
- 5 Processing area



3.2.2 F-Theta lens


The optional F-Theta lens is specially designed for use with 2-axis deflection units. It focuses the laser beam at maximum quality on any position in the processing area. At the same time, it partially optically compensates for the barrel-shaped distortion that is unavoidably produced by 2-axis deflection units. The remaining distortion (see figure) must be compensated by the deflection unit.

Distortion caused by XY deflection

Distortion caused by F-Theta lens

Distortion caused by XY deflection with F-Theta lens

3.2.3 Collimator Bracket Set

The optional Collimator Bracket Sets are used to connect a collimator to the deflection unit (see page 28, Installation with Collimator Bracket Set). The Collimator Bracket Set contains the collimator bracket as well as the aligning pins and screws in order to connect it to the deflection unit as shown in the following figures.

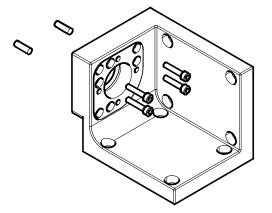


Fig. 3: Collimator Bracket Set 003 for connecting a D25 collimator to MINISCAN III-20

Optional

3.2.4 Collimator

Optional

A collimator produces a beam with parallel rays or in other words a collimated beam. A fibre laser can be connected to a RAYLASE deflection unit using a collimator and the corresponding Collimator Bracket Set (see page 28, Installation with Collimator Bracket Set).

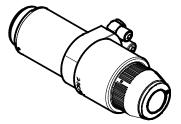


Fig. 4: D25 collimator

A choice of collimators with beam output diameters up to 25 mm (D25) can be purchased from RAYLASE.

3.2.5 Connections

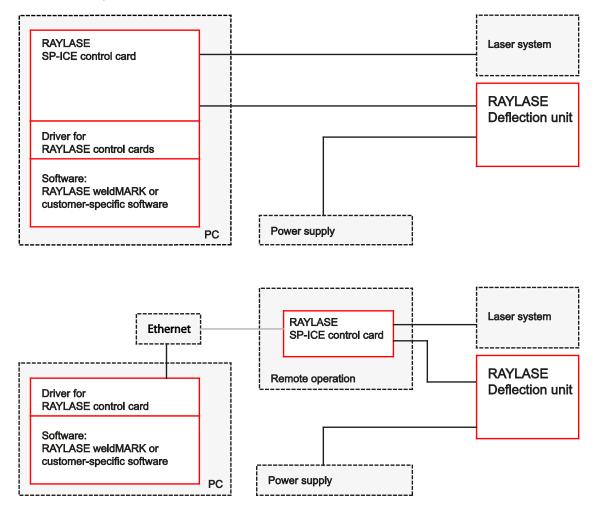
The MINISCAN III has the following connections:

- to a laser system (mechanical and optical)
- to a focusing unit (e.g. F-Theta lens, see chapter 3.2.2)

The power supply and control use the D-SUB-25-F interface (see page 23 ff.).

NOTE

• Controlled deflection is only possible if the specified power supply is connected. In addition proper control using the specified control commands must be guaranteed at all times.


3.3 Product versions

Every deflection unit in the MINISCAN III series is configured for the parameters defined when ordering and can only be used within these parameters. The parameters are specified in the type code on the rating plate. Further information on the specifications on the rating plate can be found on the Internet at:

https://www.raylase.de/en/product-naming.html

3.4 Examples of use

The following graphic shows two typical laser systems realised using RAYLASE modules (red outline) and customer-specific modules (dotted lines).

3.5 Signage

The signs listed below must be attached to the deflection unit. These signs must not be removed. Any signs that become illegible must be replaced.

Argelsrieder Feld 2+4 82234 Wessling Germany Type: WL: P/N: S/N: S/N: Year of manuf.: Made in Germany QC:	 The rating plate and the type code printed on it allow key properties of the product to be determined (see page 16, Product versions). The rating plate contains at least the following information: Company name and address Product designation Series Wavelength for which the product is designed Serial number Year of production (month)
	The series and serial number are also used to identify the product.
Gewährleistungsverlust bei Siegelbruch	The protective seal warns against unauthorised opening of the product. If the seal is broken, all warranty entitlements against RAYLASE are rendered void.
Warranty void if seal is broken	
1. Hauptschalter AUS 2. Energieversorgung abstecken	Describes the most important safety measures to be followed before maintenance work is carried out.
1. Main switch OFF 2. Unplug power supply	
LASER STRAHLUNG BESTRAHLUNG VON AUGE UND HAUT DURCH DIREKTE ODER STREUSTRAHLUNG VERMEIDEN LASER KLASSE 4	A laser warning sign must be attached at the beam output, providing information about the type of radiation, the specific hazards and the protection class. The laser warning sign must be attached in line with DIN EN 60825-1, see page 8, Classification of laser systems, by the manufacturer of the laser system.

3 PRODUCT DESCRIPTION

The following additional signs may be attached to the deflection unit.

Identifies product variants with digitally controlled position signals of the moving optical elements.

3.6 Technical data

3.6.1 General specifications

Typical deflection	±0.393 rad
Resolution XY2-100-E 16-Bit	12 µrad
Resolution SL2-100 20-Bit	0.76 µrad
Repeatability (RMS)	< 2.0 µrad
Position noise (RMS)	< 4.5 µrad
Max. Gain drift ¹	15 ppm/K
Max. Offset drift ¹	10 µrad/К
Long-term drift 8 h ¹	< 80 µrad
IP-Code	64
Emission sound pressure level	< 70 dB(A)

Remark: All angles optical.

1) Drift per axis. After 30 min warm-up, at constant ambient temperature and process loads.

3.6.2 Power supply

Voltage	+30 or +48 V	
Current	2 A, RMS, max. 5 A	
Ripple/ Noise	Max. 200 mVpp, @ 20 MHz bandwidth	

3.6.3 Control signals

Digital	XY2-100-Enhanced protocol
Digital	SL2-100 protocol

3.6.4 Ambient conditions

Ambient temperature at operation	+15 to +35 °C		
Storage temperature	-10 to +60 °C		
Humidity	≤ 80 % non-condensing		

3.6.5 Aperture-specific parameters – MINISCAN III-10

3.6.5.1 **Mechanical specifications**

Mirror substrate	SI - Silicon	QU - Fused silica
Input aperture	10 mm	
Beam displacement	12.4 mm	
Weight without objective	approx. 0.9 kg	
Dimension (L x W x H)	100 mm × 77 mm × 83 mm	

3.6.5.2 **Dynamic behaviour**

Mirror substrate	SI - Silicon	QU - Fused silica
Tuning ¹	MA	MA
Writing speed ^{2, 3}	800/1000 cps	800/1000 cps
with high/good writing quality		
Processing speed at 30 V	30 rad/s	30 rad/s
Processing speed at 48 V	30 rad/s	30 rad/s
Positioning speed at 30 V ⁴	60 rad/s	60 rad/s
Positioning speed at 48 V ⁴	100 rad/s	100 rad/s
Tracking error ⁵	0.13 ms	0.13 ms
Step response time at 1 % of full scale ⁶	0.30 ms	0.30 ms

MA - Optimized tuning for marking applications.
 With F-Theta Lens f = 163 mm / field size 120 mm x 120 mm.

3) Single-stroke font with 1 mm height.

4) Calculation of the maximum speed in the working field: Focal length F-Theta lens × positioning speed.

Example: Deflection unit with F-Theta lens f = 254 mm, positioning speed 30 rad/s => 254/1000 × 30 = 7.6 m/s.
5) Calculation of acceleration time approx. 1.8 × tracking error.

6) Controlled to 1/1,000 of full scale.

3.6.6 Aperture-specific parameters – MINISCAN III-14

3.6.6.1 **Mechanical specifications**

Mirror substrate	SI - Silicon	QU - Fused silica	
Input aperture	14 mm		
Beam displacement	17.0 mm		
Weight without objective	approx. 2.0 kg		
Dimension (L x W x H)	134 mm × 98 mm × 100.3 mm		

3.6.6.2 **Dynamic behaviour**

Mirror substrate	SI - Silicon		QU - Fused silica	
Tuning ¹	VC	MA	С	MA
Writing speed [cps] ^{2,3}	-	650/800	-	600/750
with high/good writing quality				
Processing speed at 30 V [rad/s]	30	30	70	30
Processing speed at 48 V [rad/s]	50	30	100	30
Positioning speed at 30 V [rad/s] ⁴	30	60	70	60
Positioning speed at 48 V [rad/s] ⁴	50	90	100	90
Tracking error [ms]	0.20 5	0.166	0.307	0.176
Step response time at 1 % of full scale [ms]	0.68 ⁸	0.36 ⁹	0.69 ⁸	0.39 ⁹

1) VC - Optimized tuning for a wide range of applications with emphasis on processing speed.
 C - Optimized tuning for long vectors at highest speeds.

MA - Optimized tuning for marking applications.

2) With F-Theta Lens f = 163 mm / field size 120 mm x 120 mm.

3) Single-stroke font with 1 mm height.

4) Calculation of the maximum speed in the working field: Focal length F-Theta lens × positioning speed. Example: Deflection unit with F-Theta lens f = 254 mm, positioning speed 30 rad/s

=> 254/1000 × 30 = 7.6 m/s.

5) Calculation of acceleration time approx. 2.3 × tracking error. 6) Calculation of acceleration time approx. $1.9 \times$ tracking error.

7) Calculation of acceleration time approx. 2.0 \times tracking error.

8) Controlled to 1/5,000 of full scale.9) Controlled to 1/1,000 of full scale.

3.6.7 Aperture-specific parameters – MINISCAN III-20

3.6.7.1 Mechanical specifications

Mirror substrate	SI - Silicon	QU - Fused silica
Input aperture	20 mm	
Beam displacement	26.0 mm	
Weight without objective	approx. 2.5 kg	
Dimension (L x W x H)	145 mm × 116 mm × 103.5 mm	

3.6.7.2 Dynamic behaviour

Mirror substrate	SI - Silicon	QU - Fused silica
Tuning ¹	М	М
Processing speed at 30 V	30 rad/s	30 rad/s
Processing speed at 48 V	30 rad/s	30 rad/s
Positioning speed at 30 V ²	30 rad/s	30 rad/s
Positioning speed at 48 V ²	30 rad/s	30 rad/s
Tracking error ³	0.30 ms	0.34 ms
Step response time at 1 % of full scale ⁴	0.90 ms	1.01ms

M - Optimized tuning for high precision beam deflection with sharp corners and minimized tracking error.
 Calculation of the maximum speed in the working field: Focal length F-Theta lens × positioning speed.

Example: Deflection unit with F-Theta lens f = 254 mm, positioning speed 30 rad/s

=> 254/1000 × 30 = 7.6 m/s.

3) Calculation of acceleration time approx. 2.3 × tracking error.4) Controlled to 1/5,000 of full scale.

3.6.8 Interfaces

The deflection unit has one electrical interface which is used for connecting either SL2-100 or XY2-100 data signals and power. This interface connects the deflection unit to a RAYLASE control card. The type of cable used for the connection defines whether the SL2-100 or the XY2-100 enhanced protocol of RAYLASE is used for data transmission.

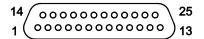


Fig. 5: D-SUB-25-F

PIN assignment

PIN	I/O	Protocol	Signal	PIN	I/O	Protocol	Signal
1	I	XY2-100	-SENDCLOCK	14	I	XY2-100	+SENDCLOCK
2	1	XY2-100	-SYNC	15	I	XY2-100	+SYNC
3	I	XY2-100	-X CHANNEL	16	I	XY2-100	+X CHANNEL
4	1	XY2-100	-Y CHANNEL	17	1	XY2-100	+Y CHANNEL
5	1	SL2-100	RS422_IN_iso-	18	I	SL2-100	RS422_IN_iso+
6	0	XY2-100	-Y STATUS	19	0	XY2-100	+Y STATUS
7	0	SL2-100	RS422_OUT_iso+	20	0	SL2-100	RS422_OUT_iso-
8	0	XY2-100	-X STATUS	21	0	XY2-100	+X STATUS
9			VPOWER	22			VPOWER
10			VPOWER	23		XY2-100	Signal GND
11		XY2-100	Signal GND	24		XY2-100	Signal GND
12			Power GND	25			Power GND
13			Power GND				

I = Diff. input, O = Diff. output

The connector housing is connected to the product housing, but not to Power GND or Signal GND. Power GND and Signal GND are electrically isolated.

Specifications XY2-100

Input signals diff.		Output signals diff.	
Voltage	0 to 5 V	Differential Output Voltage at 120 Ω termination	min. 2 V - typ. 2.6 V - max. 4 V
Threshold	±200 mV	Common-mode Output Voltage	typ. 1.5 V - max. 2 V
Hysteresis	typ. 35 mV	ESD Protection	±15 kV
Impedance	120 Ω		
ESD Protection	±15 kV		

RS422_IN		RS422_OUT		
Differential Input	max. ±5 V	Differential Output	typ. 2.5 Vpp	at 120 Ω load
Voltage		Voltage		
Differential Input	typ. 120 Ω	Source Impedance	typ. 120 Ω	
Termination (AC)				
Differential Input	typ. 3.5 Ω			
Impedance (DC)				
Hysteresis	typ. 30 mV			

Specifications SL2-100

The MINISCAN III's digital controller makes it possible to return data-signals to the control card. Data are transferred every 10 µs to the controller card via the interface. There is one return channel for each axis. This allows, for instance, monitoring the current axis positions during processing, or detailed failure analysis following a malfunction.

Each axis also has a forward channel that can transfer a data packet to the scan head every 10 μ s: normally, these will be target positions for the axis.

Whenever it becomes necessary to transfer a command to the scan head during processing, e.g. to change the type of information supplied on the return channel, the usual transmission of target positions is suppressed for one 10 µs period. To avoid undesirable processing artefacts due to the missing target position, a minimum interpolation period of 22 µs should be configured on the scan head. The currently configured interpolation period can be retrieved via the command *SetMode Interpolation Ox0590*, and set with the command *SetInterpolation 0x90*. If the scan head's interpolation period is re-configured, it will also be necessary to adjust the laser-

delay settings to suit. The interpolation period has no effect on the dynamic behaviour of the scan head.

All commands and the extensive capabilities of the SL2-100 as well as XY2-100 enhanced protocol are described in detail in the manual *SS-IV and SS-V Enhanced*, which can be found on the supplied USB stick.

3.6.9 Cabling information

To connect the deflection unit to a RAYLASE control card, it is recommended to use original RAYLASE connection cables. If other connection cables are used, the following description must be strictly adhered to in order to ensure proper functioning of the system.

The following figure describes the cabling of the SL2-100 interface.

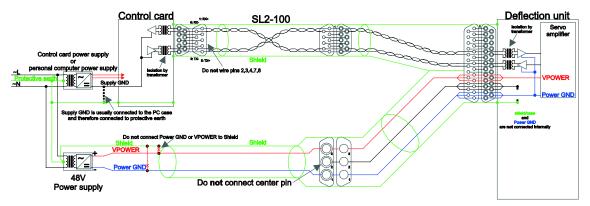


Fig. 6: Cabling of the SL2-100 interface

The following figure describes the cabling of the XY2-100 interface.

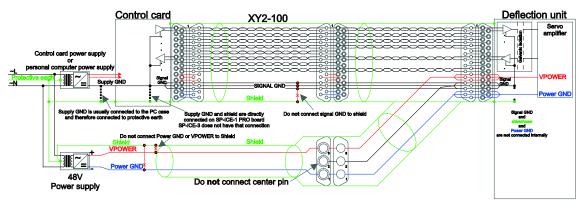


Fig. 7: Cabling of the XY2-100 interface

3.7 Lifespan

The lifespan of the product is 10 years.

4 INSTALLATION

Installation may only be carried out by trained personnel. These trained personnel must be familiar with the general safety regulations that are applicable for installation and operation of opto-mechatronic systems, machines, and plant.

4.1 Safety during installation

Hazard due to electrical energy

The deflection unit is designed for operation with a safe extra-low voltage supply (< 60 V DC). The operator is responsible for safety of the power supply (voltage limitation, shutdown on overcurrent, line protection).

- Make sure that the power supply does not exceed the specified low voltage.
- During all work on the electrical power supply and the electrical systems, observe the relevant electrical safety regulations.

A WARNING

Risk of injury due to laser radiation

The laser beam (including a reflected beam) can cause severe injuries to the eyes and skin.

- The laser system may only be installed and started up by trained personnel.
- Before carrying out any work, make sure that the laser equipment is switched off and secured against being switched on again.
- After all work, make sure that all housing covers are in place.

Risk of injury due to falling product

A falling product unit can cause injuries.

- The product should be installed by two people wearing suitable safety shoes.
- In case the product fell down it must not be used any more. It has to be sent back to RAYLASE for service.

4.2 Installation location

The deflection unit may only be operated in closed rooms. It must be protected against contact with liquids.

The deflection unit is not suitable for use in potentially explosive environment.

If the materials to be processed can result in toxic vapours, safe extraction of these must be ensured. Other operating and ambient conditions must be observed (see page 19, Ambient conditions).

4.3 Preparing for installation

- 1. Make sure that the laser system is prepared in such a way that the laser beam is emitted centrally and at a right angle from the installation surface for the deflection unit.
- 2. Prepare two aligning pins and four screws. The specifications for these can be found on the USB stick supplied as part of the design data.
- 3. Carefully remove the deflection unit and any other accessories, for example the lens, from the packaging.
- 4. Make sure that the specifications of the deflection unit and the lens correspond to the application requirements (see page 19, Technical data and page 17, Signage). In case of any variations, contact RAYLASE.

4.4 Installing the lens

- 1. Carefully remove the protective cover on the deflection unit beam output and the protective cover on the lens.
- 2. Check the deflection unit and the lens for impurities and damage.
 - > Impurities must be removed before start-up (see page 32, Cleaning).
 - > Damaged components may not be used.
- 3. If a lens ring is included in the configuration, screw the lens ring into the deflection unit beam output.
- 4. Carefully screw the lens into the deflection unit beam output.

4.5 Installing the deflection unit

The installation of a MINISCAN III with a RAYLASE Collimator Bracket Set for a fibre laser is done according to chapter 4.5.2. A direct installation for example in combination with a solid-state laser is done according to chapter 4.5.1.

4.5.1 Standard installation

- 1. Fit the prepared aligning pins into the corresponding holes in the installation surface.
- 2. Carefully remove the protective cover on the deflection unit beam input.
- 3. Position the deflection unit on the installation surface using the pins.
- 4. Secure the deflection unit with the prepared screws.
 - > The deflection unit is aligned with the laser system beam output using the pin holes.

Complete the installation according to chapter 4.6.

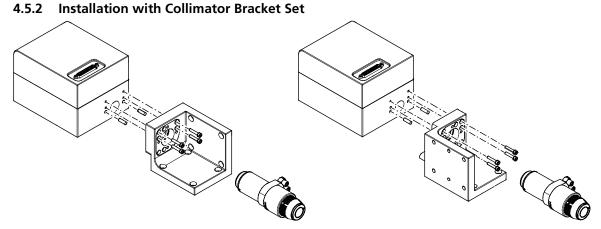


Fig. 8: Installation options MINISCAN III-20 with Collimator Bracket Set 003 and D25 collimator

- 1. Fit the prepared aligning pins into the corresponding holes in the installation surface used for mounting the collimator bracket.
- 2. Position the collimator bracket on the installation surface using the pins.
- 3. Secure the collimator bracket with the four prepared screws.
- 4. Fit the aligning pins which are included in the Collimator Bracket Set into the collimator bracket according to the figures above.
- 5. Carefully remove the protective cover on the deflection unit beam input.
- 6. Position the deflection unit on the installation surface of the collimator bracket using the pins.
- 7. Secure the deflection unit with the screws included in the Collimator Bracket Set.
- 8. Screw the collimator into the collimator bracket.
- 9. Connect the fibre of the laser to the collimator according to the collimator manual.
 - \checkmark The deflection unit is aligned to the fibre of the laser.

4.6 Completing installation

- 1. Make sure that the control signals and the power supply correspond to the relevant specifications.
- 2. Check whether the connections for the control signals and the power supply are correctly wired (see page 23, Interfaces).
- 3. Connect the plug connections when not connected to the voltage.
- 4. Make sure that the working area is clear and there are no reflective materials in it.

5 START-UP

Start-up and operation may only be carried out by trained personnel with regular laser safety training. When preparing for operation, it must be ensured that the mirrors in the deflection unit are always correctly actuated and that the laser beam is switched off when the mirrors are stationary.

5.1 Safety during start-up and operation

Risk of injury due to improper handling

Improper handling can overload and destroy the deflection mirrors during operation. Destroyed mirrors can deflect the laser beam onto the protective housing, heating it severely or destroying it. This can result in a risk of burns or uncontrolled escape of laser radiation from the protective housing.

- Ensure optically correct input of the laser beam into the deflection unit and check this before start-up.
- Observe the specified start-up sequence.
- Make sure that the deflection unit is always operated with a lens. The lens must be suitable for the relevant application and wavelength and must be undamaged.
- Only operate the deflection unit up to the maximum permitted laser power. Refer to the specifications in the technical data for details.
- Only operate the deflection unit when it is closed.
- Make sure that no water is splashed onto the deflection unit.
- Check whether the laser wavelength corresponds to the specified wavelength of the deflection unit.
- Do not process any materials which can reflect the laser beam back to the deflection unit.

Risk of burns and fire due to heating

If the diameter of the laser input beam exceeds the permitted value, the mechanical system is severely heated. This results in a risk of burns when touching the hot components. If any highly flammable materials are in the vicinity, it can result in fire.

- Observe the specified maximum input beam diameter.
- Before starting up the deflection unit, make sure that the input beam diameter is not exceeded.

Risk of injury due to laser radiation

The laser beam (including a reflected beam) can cause severe injuries to the eyes and skin.

- The laser system may only be installed and started up by trained personnel.
- Before carrying out any work, make sure that the laser equipment is switched off and secured against being switched on again.
- After all work, make sure that all housing covers are in place.

NOTE

Ejection of mirror fragments

If the mirrors are destroyed by overloading, fragments can be ejected from the laser beam output.

• Always operate the deflection unit with a lens, as this will keep in the fragments in the event of a failure.

5.2 Checking the installation

Before start-up and operation of the deflection unit, check the following points:

- 1. Check whether the mechanical installation has been carried out completely and correctly (see page 26, Installation).
- 2. Check whether the electrical connection has been carried out completely and correctly (see page 26, Installation).
- 3. Check that the deflection unit has suitable mirrors. To do this, refer to the deflection unit rating plate and compare the details with the application (see page17, Signage).
- 4. Check that the lens has been mounted into the deflection unit beam output.
- 5. Check that the accessible optical components are free of dust and clean. If not, they must be cleaned (see page 32, Cleaning).

5.3 Start-up

Observe the following start-up sequence:

- 1. Switch on the RAYLASE control card.
- 2. Start the control software.
- 3. Switch on the power supply to the deflection unit.
- 4. Switch on the laser.

When shutting down the laser system, the components must be switched off in precisely the reverse of this sequence.

6 MAINTENANCE

Maintenance may only be carried out by trained personnel. These trained personnel must be familiar with the general safety rules for electrical engineering, optics, mechanics and laser technology.

6.1 Cleaning

🛕 WARNING

Risk of injury due to incorrect cleaning

Incorrect cleaning can cause damage to optical elements (e.g. due to scratching). Damaged optics can then be destroyed during operation, deflecting the laser beam onto the protective housing. This can result in a risk of burns or uncontrolled escape of laser radiation from the destroyed protective housing.

- Only clean optical components if you have sufficient knowledge and experience of handling optics for laser components and laser systems.
- Precisely follow the instructions for cleaning the optics set out in this chapter.

6.1.1 Cleaning the housing

- 1. When cleaning the housing, do not touch the optical surfaces. Cleaning these is a separate task.
- 2. Before cleaning, ensure that the laser system is switched off and secured against being accidentally switched on again.
- 3. Clean the deflection unit housing with a soft lint-free duster.
- 4. If there is more severe dirt, moisten the cloth with a non-aggressive cleaning solution (e.g. soap solution).

6.1.2 Cleaning the lens

The lens is very sensitive and may only be cleaned by experienced professionals.

- 1. Before cleaning, ensure that the laser system is switched off and secured against being accidentally switched on again.
- 2. Only hold the optical assembly with powder-free latex gloves and only by the edge. Fingerprints contain aggressive substances that damage the optical surfaces.
- 3. Carefully remove the lens and place it in a safe location protected from dust.
- 4. Blow off any loose particles from the surface with clean and oil-free compressed air. Note that the compressed air in workshops may contain oil particles and in this case is unsuitable for cleaning optics.
- 5. Moisten a suitable lens cleaning cloth with high-purity isopropanol or acetone.
- 6. Place one end of the moistened cloth on the optics and pull it slowly across the optics. Do not exert any pressure and do not rub it over the optics.
- 7. Remove any remaining solvent residue with a dry lens cleaning cloth.
- 8. Repeat this procedure until the surface is completely clean. Use a new lens cleaning cloth each time.

6.1.3 Cleaning the mirrors

The mirrors are very sensitive and may only be cleaned by experienced professionals. We recommend sending the deflection unit to RAYLASE for this cleaning.

- 1. Before cleaning, ensure that the laser system is switched off and secured against being accidentally switched on again.
- 2. Only hold the optical assembly with powder-free latex gloves and only by the edge. Fingerprints contain aggressive substances that damage the optical surfaces.
- 3. Blow off any loose particles from the surface with clean and oil-free compressed air. Note that the compressed air in workshops may contain oil particles and in this case is unsuitable for cleaning optics.
- 4. Moisten a suitable lens cleaning cloth with high-purity isopropanol or acetone.
- 5. Place one end of the moistened cloth on the relevant mirror and pull it slowly across the mirror. Do not exert any pressure and do not rub it over the mirror.
- 6. Remove any remaining solvent residue with a dry lens cleaning cloth.
- 7. Repeat this procedure until the surface is completely clean. Use a new lens cleaning cloth each time.

6.2 Servicing

No specific service interval is specified.

- 1. Check regularly whether all stickers and signs are present and legible (see page 17, Signage).
- 2. Replace any missing or illegible stickers or signs.

7 UNINSTALLING

7.1 Safety when uninstalling

Risk of injury due to falling product

A falling product unit can cause injuries.

- The product should be installed by two people wearing suitable safety shoes.
- In case the product fell down it must not be used any more. It has to be sent back to RAYLASE for service.

7.2 Uninstalling the deflection unit

- 1. Switch off the laser system and secure it against accidentally being switched on again.
- 2. Detach the plug connections to the deflection unit.
- 3. Loosen the fastening screws and carefully remove the deflection unit.
- 4. Cover all connections so that they are dust-protected and safe for transport.
- 5. Pack the deflection unit in a dust-proof container.

8

STORAGE

The deflection unit must be stored in a dust-free location and under the specified ambient conditions (see page 19, Ambient conditions).

9

TRANSPORTATION

A WARNING

Damage due to improper transportation

During transportation or shipping of the deflection unit there is a risk of it being damaged.

- Seal the deflection unit in a dust-proof container before transportation.
- Transport and ship the deflection unit only in the original packaging.

10 DISPOSAL

10 DISPOSAL

Observe the applicable regulations for disposal of the product.

11

TROUBLESHOOTING

A WARNING

The laser beam can cause severe injuries to the eyes and skin.

- During troubleshooting, never look directly or indirectly into the laser beam.
- Do not deactivate any safety precautions designed to protect against laser radiation.
- Wear laser protection clothing and/or goggles appropriate for the relevant danger rating.
- 1. Make sure that only the necessary professionals are in the room for troubleshooting and that they have protective equipment appropriate to the hazards.
- 2. In case of malfunctions, check whether the problem and a possible remedy appear in the following checklist.
- 3. If the fault cannot be resolved, contact RAYLASE Customer Service.

Problem	Possible cause	Remedy	
Processing quality is	Electrical energy supply defective		
poor	Processing parameters incorrect		
	Deflection unit unsuitable for	or selected application	
Processing quality has	Lens dirty	See page 32, Cleaning the lens	
deteriorated	Mirror dirty	See page 33, Cleaning the mirrors	
	Laser power reduced	The RAYLASE laser processing software weldMARK [®] can be used to compensate for a deteriorating laser power. Menu: System > Global Settings	
	Processing parameters changed		
	Beam expander changed		
Laser spot changed	Lens dirty	See page 32, Cleaning the lens	
	Mirror dirty or damaged	Send deflection unit to RAYLASE for repair	
	Laser system badly adjusted	m badly adjusted	
No laser beam although	Beam path blocked	Remove protective cover from beam input and/or output	
the laser process has been started	Laser control defective		
	Laser system defective		
Deflection unit only deflects the laser beam in one direction or not at all	Data line defective		
X and Y axis reversed	Wiring incorrect		

Index

Α	
Accessories Ambient conditions	
C	
Cabling	
Checking the installation	

12 19

25 31

10

Classification (laser systems)	8
Cleaning	32
Connections	15
Customer service	6

D

Designated use	8
Dimensions	19
Display conventions	5
Disposal	37
Documents, other applicable	5

F

Functional description	
Deflection unit	12

Η

I

Installation	26, 27
Completion	29
Preparation	27
Safety	26
Instruction, required	
instruction	11
Interfaces	23
Items included	12

L

Laser area	9
Laser radiation	10
Laser system	
classification	8

Laser warning sign Lens Lens	17 32 27
M Maintenance Cleaning Servicing Manufacturer	32 32 33 6
O Operating personnel training and instruction Other applicable documents	11 5
P Product description Product versions Protection measures, required Protective equipment, required Protective seal	12 16 11 11 17
R Rating plate	17
S Safety Installation Uninstalling Sequence Servicing Signage Spare parts Start-up Storage	26 34 31 33 17 12 30 35
T Technical data Training, required Transportation	19 11 36

Troubleshooting

38

U

Uninstalling Safety 34 34 **W** Warranty

Weight

6 19

2-AXIS DEFLECTION UNITS

Head office: RAYLASE GmbH Wessling, Germany 49 8153 9999 699 info@raylase.de China subsidiary: RAYLASE Laser Technology (Shenzhen), Ltd. Shenzhen, China +86 755 2824 8533 info@raylase.cn USA subsidiary: RAYLASE Laser Technology Inc. Newburyport, MA, USA +1 978 255 672 info@raylase.com

