Gaussian Beams Calculator

View All Technical Tools

Axial Distance, $z \left[ \text{mm} \right]$:
Beam Waist, $\omega_0 \left[ \text{mm} \right]$:
Wavelength, $\lambda [ \large{\unicode[computer modern]{x03BC}} \text{m} ]$:

Half Beam Diameter, $\omega \! \left( z \right) \left[ \text{mm} \right]$: --

Radius of Curvature, $R \! \left( z \right) \left[ \text{mm} \right]$: --

Rayleigh Range, $Z_R \left[ \text{mm} \right]$: --

Rayleigh Half Diameter, $\omega_R \left[ \text{mm} \right]$: --

Half Angle Divergence, $\theta \left[ \text{mrad} \right]$: --

 $$z_R = \frac{\pi \omega_0 ^2}{\lambda}$$ $$\omega \! \left( z \right) = \omega_0 \sqrt{1 + \left( \frac{z}{z_R} \right) ^2}$$ $$Z_R = \frac{b}{2}$$ $$\omega_R = \omega \! \left( Z_R \right) = \sqrt{2} \cdot \omega_0$$ $$R \! \left( z \right) = z \left[ 1 + \left( \frac{z_R}{z} \right)^2 \right]$$ $$\theta = \frac{\lambda}{\pi \, \omega_0}$$
 $$\lambda$$ Wavelength $$Z_R$$ Rayleigh Range $$z$$ Axial Distance $$\omega \! \left( z \right)$$ Half Beam Diameter $$\omega_0$$ Beam Waist
 $$b$$ Confocal Parameter $$\omega_R$$ Rayleigh Half Diameter $$R \! \left( z \right)$$ Radius of Curvature $$\theta$$ Half Angle Divergence

Description

Mathematically model beam propagation of Gaussian beam using simple geometric parameters. Calculator uses first-order approximations and assumes TEM00 mode to determine beam spot size in free space applications. Please note that results will vary based on beam quality and application conditions.

Related Resources and Products

Application Note
Application Note

Related Products

Was this content useful to you?

Sales & Expert Advice

or view regional numbers
Easy-to-Use
QUOTE TOOL
enter stock numbers to begin

×